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Introduction

• Nearly every MPI implementation uses a rendezvous protocol for 
long messages
– Optimized for bandwidth
– Mandated by

• Network
– Message selection for appropriate remote destination

• Operating system
– Resource management (pinning pages)

• No such restrictions on ASCI Red
– No packetization
– No page pinning

• Does an eager protocol make a difference?
• Do we need an eager protocol for Red Storm?



ASCI Red

• Hardware
– 4640 compute nodes

• Dual 333 MHz Pentium II 
Xeons

• 256 MB RAM
– 800 MB/sec bi-directional 

network
– 38x32x2 mesh topology

• Software
– Puma/Cougar LWK
– Portals 2.0

• 2.38/3.21 TFLOPS
• Deployed in 1997



MPI Implementation for ASCI Red

• Short messages (<8KB) are sent eagerly and 
buffered at the receiver

• Long messages are sent eagerly
– Expected messages (pre-posted) are delivered 

directly into the user buffer
– Unexpected messages leave a message header that 

allows the receiver to get message from the sender 
when matching receive is posted

• Fully supports the MPI Progress Rule
– Data moves without making MPI library calls
– Portals takes care of progress



Reasons for an Eager Protocol

• Portals are based on expected messages
• Don’t penalize applications that pre-post receives
• Optimize for the common case (pre-posting)
• Penalty for not pre-posting is not very high

– Network performance (balanced machine)
– Jobs are placed close together in the network so 

contention should be local
• Previous research had shown eager protocols to be a 

significant performance advantage
• MPI implementation is less complex since progress is 

maintained outside of the MPI library



Motivation

• But is eager better?
– No real data that pre-posting is the common case
– Not sure whether the eager optimization improves 

application performance
– Unclear whether packetization is an issue

• Direct comparison with standard rendezvous 
might answer these questions



Standard Rendezvous Implementation

• Short protocol is the same
• Long protocol

– Sends a zero-length message and waits for receiver 
to read data

– Receiver waits for zero-length message and reads 
data

• Can choose eager or standard rendezvous at 
runtime via environment variable



Added Complexity

• Completion of eager protocol messages only 
involve the particular message being completed 

• Standard rendezvous
– Must look at all outstanding communication 

requests since it cannot block waiting for only one 
to complete

– Does not comply with the MPI Progress Rule
• (Or is less efficient since data can only move when 

MPI library calls are made)



Micro-Benchmarks

• Ping-pong bandwidth test
– Pre-posted receives

• Post-Work-Wait (PWW) method of the COMB benchmark suite
– Calculates effective bandwidth for a given simulated work 

interval
– Used to measure the achievable overlap of computation and 

communication
– Pre-posted receives

• NetPIPE
– Determines aggregate throughput by exchanging ping-pong 

messages for a fixed period of time
– Pipeline test that sends several messages in a burst (ping(n)-

pong)
– No guarantee of pre-posting



Ping-Pong Performance



PWW Performance



NetPIPE Ping-Pong



NetPIPE Pipeline



New Micro-Benchmark

• Only NetPIPE considers unexpected messages
• Real applications are likely to have mixture of 

pre-posted and unexpected messages
• How do unexpected messages impact 

bandwidth?

• We designed a new micro-benchmark that 
measures bandwidth with a parameterized 
percentage of pre-posted receives



Performance for 10KB Messages



Performance for 100KB Messages



Performance for 1MB Messages



So eager is better, right?



CTH Application

• Models complex multi-dimensional, multi-material 
problems characterized by large deformations 
and/or strong shocks

• Uses two-step, second-order accurate finite-
difference Eulerian solution

• Material models for equations of state, strength, 
fracture, porosity, and high explosives

• Impact, penetration, perforation, shock 
compression, high explosive initiation and 
detonation problems



Expected vs. Unexpected Messages
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CTH Runtime
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CTH Results

• Performance is better with the eager rather than 
standard rendezvous

• New micro-benchmark doesn’t consider 
independent progress, which could be important

• Need to do more analysis of real applications to 
understand implications of unexpected messages 
and independent progress



Summary

• Described an implementation of a standard 
rendezvous and eager rendezvous

• Initial premise was that eager rendezvous had a 
significant advantage over standard rendezvous

• Standard rendezvous is more complex and does 
not support the MPI Progress Rule (or is less 
efficient at independently moving data)

• Presented a new micro-benchmark and results
• Application results show that micro-benchmarks 

don’t tell the whole story
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